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» ABSTRACT

~7

This is a continuation of a series of papers on the digital
geometry of three-dimensional digital images. In earlier reports,
D. Morgenthaler and A. Rosenfeld gave symmetric definitions for
simple surface points under the concepts of 6-connectivity and
26-connectivity, and they non-trivially characterized a simple
closed surface (i.e., a subset of the image which separates its
complement into an "inside® and an Youtside") as a connected col-
lection of "orientable" simple surface points. Later, the author
and A. Rosenfeld established that the computationally costly assump-
tion of orientability is unnecessary for €-connectivity by proving
that orientability, a local property, is implicitly guaranteed with-
in the (3x3x3)-neighborhood definition of a é-connected simple sur-
face point. However, they also showed that no such guarantee
exists for 26-connectivaity. In this report, the author completes
this investigation of simple closed surfaces by showing that ori-
entability is ensured globally by 26-connectivity. Hence, a simple
closed surface may be efficiently charactered as a connected col-
lection of simple surface points regardless of the type of connec-
tivity in consideration. ,?[//
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1. Introduction

Geometrical and topological characterizations of subsets
of digital pictures play an important role in computer image
analysis and pattern recognition [l1]. Topological concepts
such as connectedness and simple closed curves are well-under-
stood in two-dimensional arrays (2] and have proven to be use-
ful tools for a wide variety of image analysis tasks such as
object extraction, thinning, and skeletonization.

With the increased interest in computed tomography and the
three-dimensional representation of microscopic cross-sections
and time sequences of images, it has now become desirable to
develop a consistent and efficient theory for the understanding
of geometric and topological properties of subsets of three-
dimensional digital arrays. Early work in this area was done
by Gray [3] and Park [4], and other authors [5,6] have considered
generalizations of specific two-dimensional results to higher
dimensions. However, the current series of papers cn three-
dimensional digital geometry written at the Computer Vision
Laboratory of the University of Maryland ([7],I[5],(91,(10],(11],
[12],[13]) appears to be the first systematic study designed to
develop the desired theory. This report is the latest in this
series, and it completes the characterization of simple closed
surfaces.

Simple surface points and simple closed surfaces were in-
troduced in [10] to establish the three-dimensional analog of

the two-dimensional Jordan Curve Theorem. The goal was to
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define computationally efficient properties such that a
subset of the 3D-lattice satisfying those properties
separated the complement of that subset into an "“inside"

and an "outside.” Indeed, this goal was to a large ex-

tent achieved in [10] where it was shown that a connected
collection of "orientable" simple surface points provided
the desired characterization. Unresolved, however, was

the necessity of orientability, a property that unlike the
other components of the characterization required the com-
putationally costly examination of the (5x5x5) neighborhoods
of the points under consideration. 1In [13], it was shown
that orientability was actually guaranteed by the (3x3x3)-
neighborhood restrctions imposed locally by simple surface
points under 6-connectivity (one of the two types of connec-
tedness to be considered). However, it was also shown in
[13] that no such guarantee was imposed locally under 26-con-
nectivity. In this paper, we succeed in showing that orien-
tability is imposed globally by a 26-connected set of simple
surface points. Hence, the desired characterization, which
requires only the examination of (3%3x3)-neighborhoods, is
etablished under both types of connectivity.

The approach to the characterization of surface proper-
ties in this paper and others in this series where surfaces
are considered to be sets of voxels should be contrasted with
that of Artzy, Frieder, and Herman [14] and Herman and Webster
[15] in which surfaces are considered to be faces of voxels.

The two approaches are complementary.




2. Connectivity and simple closed surfaces

Let I denote a 3D array of lattice points, which, without
loss of generality, we may assume to be defined by integer
valued triples of Cartesian coordinates (x,y,z). We consider
two types of neighbors of a point p = (xp,yp,zp)EZ:

(i) the neighbors (u,v,w) such that }xp—u|+|yp-v|+|zp-w| =1

(ii) the neighbors (u,v,w) such that max{lxp-ul,lyp—vl,lzp—wl}==1
We refer to the neighbors of type (i) as 6~neighbors of p (the
face neighbors) and to the neighbors of type (ii) as 26-neighbors
of p (the face, edge, and corner neighbors). The 6~neighbors are
said to be 6~adjacent to p, and the 26-neighbors are said to be
Z26-adjacent to p. The statement that «¢ is a path from point p
to point g in Z means that there exists a positive integer n
such that c={po,pl,...,pn}gz where Py=P» P,=q and p; is adjacent
to p;_; for 1<isn. The terms 6-path and 26-path are utilized
depending on the type of adjacency under consideration.

Let S denote a non-empty subset of 7 which, without loss of
generality, we may assume does not meet the border of L. The
points p and q of S are said to be connected in S provided there
is a path from p to g which is contained in S. Connectivity is
an equivalence relation, and the classes under this relation are
called components. Again, the terms 6-connectivity, 26-connectivity,
6-components, and 26-components are utilized depending on the

type of path under consideration.




Similarly, we can consider the components of the comple-
ment S of S. Exactly one of these components contains the
border of I; this component is called the background of S.
All other components of §, if any, are called cavities in
S. As is the custom in 2D (and 3D) digital geometry, oppo-
site types of connectivity are assumed for S and S to avoid
ambiguous situations. Finally, let p be a point of S. We
let N27(p) denote the 27 points in the (3x3x3) neighborhood

of p, and we let N (p) denute the 125 points in the (5x5x5)

125
neighborhood centered at p.
Surfaces

In [10], the above structure on the 3D-lattice was uti-
lized to introduce the concept of a simple closed surface in
providing a non-trivial 3D analog of the 2D Jordan Curve

Theorem.

A point pé€S is a simple surface point provided:

(1) SﬂN27(p) has exactly one componeht adjacent to p (in
the S sense); denote this component Ap.
(ii) §ﬂN27(p) has exactly two components, C; and C,, adja-
cent to p (in the § sense).
(iii) If g¢S and q is adjacent to p (in the S sense) q is
adjacent (in the S sense) to both C, and C,.
As observed in {10}, there are at most two components of

§QN125(p) adjacent (in the S sense) to a simple surface point

p. Thus, suppose that p is a simple surface point of S and




that each element of Ap is also a simple surface point of

S (i.e., p is not near an "edge"). When §ﬂN125(p) has two

components adjacent to p, (the surface at) p is said to

be orientable and Ap is called a disk. When SNN (p)} has

125
only one component adjacent to p, (the surface at) p is

said to be non-orientable and Ap is called a cross-cap.

Theorem 0.1 [10] If S is a connected collection of orientable
simple surface points, then S has exactly one cavity, and S

is said to be a simple closed surface.

Theorem 0.2 [13] There does not exist a 6-connected cross-

cap. That is, if S is a 6-connected subset of £ and p is a
simple surface point in $ such that each element of Ap is also
a simple surface point of S, then les(p)ﬂ§ has two components
26-adjacent to p and hence p is orientable.

Thus, the computationally costly assumption of orienta-
bility in Theorem 0.1 is unnecessary for 6-connectivity. How-
ever, the following example shows that the situation is more

complex with respect to 26-connectivity.

Example 0.1 (13] There exists a 26-connected cross-cap. The
following set & (of "1's") is 26-connected, the central point

p in the third plane is a simple surface point of S and each
element of Ap is also a simple surface point of p, yet les(p)ﬂ
S has only one component 6-adjacent to p and hence p is not ori-

entable.
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3. 26=-connected simple closed surfaces

To show that orientability is not necessary in the charac-
terization of 26-connected simple closed surfaces, let us first
outline the proof of Theorem 0.1 given in [10]. Suppose S is
a 26-connected collection of [orientable}, simple surface
points.

P P

y=yp, and zzzp}, the vertical half-line emanating up-

ward from p.

(1) For each p = (xp,y ,2_) €S, let H, = {(x,y,2)€z | X=Xy

(2) Suppose p€¢S and a = Py+Pys---/P, is a connected path

in § along H_ such that Py and p (the points pre-

P n+l
ceding and following p along Hp) are both in §. Ccon-
sider M = U{N27(x) | x€a}. 1If Py and P41 are 26~
connected by a path in MNS, then we say that Hp touches

$ in a. If Py and p are not 26-connected by a path

n+1
in MNS, then we say that H, crosses S in a.

(3) If p€¢S, and Hp crosses S an odd number of times, we
say that p is inside S. If p€sS, and Hp crosses S an
even number of times, we say that p is outside S.

(4) If p,qg€S, let C = {A* | A* is a component of

plq plq p'q

Proposition 1. 1If p,q¢S, p is 6-adjacent to g, and A* ¢€C ’
P9 P.q

then MNS has two components which are 6-adjacent to each element

* = * .
of Ap,q' where M U{N27(x) | xEAp'q}
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Proposition 2. 1If p,q¢S, p is 6-adjacent to g, and A* _«¢

Pg9
C th . i i * iff
p,q’ en Hp crosses S an odd number of times in Ap,q i
Hq crosses S an odd number of times in AS q
14

Proposition 3. If p is 6-connected to g in S, then either

e e = o e —— . MM o = T T ST

both are inside of S or both are outside of S.

Proposition 4. The inside and outside of S are both non-empty

and S has exactly one cavity.

A detailed examination of the above proof shows that the use
of orientability is restricted to establishing Proposition 1,
where it is assumed that for each x€A*

’

P4
components which are each 6-adjacent to x. Thus, our goal is

’ N125(x)ns has two

to provide a proof of Proposition 1 without such an assumption.
As in [13], to establish properties.of simple surface points,
in which symmetry between the two types of connectivity fails,

requires considerable combinatorial detail and explicit notation.

Notation. If McZ, let M = MNS. For each p = (x5ry5r2,), let

p+j,zp+k). In addition, let p+ denote p(0,0,1)

and p- denote p(0,0,-1).

p(i,j,k)=(xp+i,y

For k an intcger, let:
k

(2) Ny N K ana
P k=m,n
_ ak==1,1
(3) Np = Np .

R e R
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For example:

Np = N,,(p)
N;2 = the 3x3 plane centered on p(0,0,-2)
_1 1
N~ = N°NS
p p
H_ = {p(0,0,k) | k=0}

Finally, if p,q S, p is 6-adjacent to q, and A; q is a com-
ponent of (HpUHq)ns, then there exist integers n, and m gucl
h * o= * .
that Ap'q nogm(Ap'qn{p(o.O,n),q<0.0.n)})

(1) For n,snsm, let A;,q(n) Aélqﬂ{p(0,0ln),q(O'O,n)}#L

{p(0,0,n),q(0,0,n)}.

(2) For noinim, let Bs'q(n)

(3) B* = U B* (n).

P,q n=ng,m P:q

Our goal is now to establish that if {p,q}gg, p is 6-adjacent
to g, and As q is a component of (HpUHq)ﬂS, then M, where
’

M=U{Nx | xEBB q}, has two components which are each 6-adja-
14

cent to every element of A; q
r .

Lemma 1. If p is a simple surface point of S and xéﬁb, then x

is 6-connected to p in ﬁb

Proof: Suppose not. Then W.L.G., either (1) xENg, (2) x=

p(l,1,1) and p(1,1,0)€s,0or (3) x=p(0,1,1) and p(1,1,1)¢€S.

If (1), then W.L.G. let x=p(1,1,0). Now, {p(1,0,0),
p(0,1,0}cS and either (i) {p(1,1,1), p(1,1,-1)}nS#@ or (ii)
{p(1,1,1), p(1,1,-1)}<8. If (i), then W.L.G. let p(1,1,1)€s.
But now p cannot be 6-adjacent to two components of N .

p(l,1,1)
$# If (ii), then p(l1l,0,0) cannot be 6-adjacent to two compo-

nents of ﬁé which are 6-adjacent to p. #




e

If (2), then p+ cannot be 6-adjacent to two components
of N . Hence p+€S, and therefore {p(0,1,1), p(1,0,1)}<S.
p(i,1,0)
Now, Np(O,l,l) has exactly two components, Cl and C2, 6-adja- 1
cent to p(0,1,1). Since p(1l,1,1) is 6-adjacent to p(0,1,1),
p(1,1,1) must be in one of C; and C,, say C;. Now, since
p(1,0,0) cannot be 6-connected to p(0,1,1) in Np(O,l,l)’
can be in neither C1 or C2. Thus p(O,O,l)EC2 or else p(l1,0,1)
could not be 6-adjacent to both Cl and C2. But p is 6-adjacent

it

to both C; and c, in ﬁp(O,l,l)' Therefore, either (i) p(0,1,0)¢C,,
or (ii) p(—l,0,0)Ecl. If (i), then p(1,2,0)€C2 or else p(l,1,0)

could not be 6-adjacent to C Thus, {p(0,2,0), p(1,2,1)1}cS or

2°

else C1 would be 6-adjacent to C However, now there can be

2°
from p(l,2,0)€C2 to p(0,1,1). # If

no 6-path in Np(o,l,l)

(ii), then p(-1,0,1)€¢S. Hence, since these must be a 6-path

in N from p(~1,0,0) to p(0,1,1), it follows that p(-1,
p(ollrl)
1,0)¢Cy. But p(0,1,0)¢S since it cannot be 6-adjacent to two

components of Np(-l,O,l)' Thus, p(0,1,0)€Cl and we again have
case (i). #
1f (3), then {p(0,0,1), p(1,0,0)}cS. However, now p can-

not be 6-adjacent to two components of Np(l,l,l)' #

Lemma 2. If p,g¢€¢S and qEAp, then ﬁéUﬁé has two components
each of which is 6-adjacent to both p and g. Equivalently,

the two components of ﬁé are not merged by a 6é-path in ﬁé.




Proof: Suppose not. Let C, and C2 denote the two components

of ﬁé, and let Ci and Cé denote the two components of ﬁé.

Now, let M=NqﬂNp. There must exist a 6-path a contained in

ﬁé/M such that a is 6-adjacent to y;€C MM and to yzéc nM, Fur-

1 2
thermore, g is 6-adjacent to both ClnM and CzﬂM. Due to sym-
metry, we can assume W.L.G. that (1) g = p+, (2) g = p(1,1,0),
or (3) g = p(1,1,1).

If (1), it follows that Cé
g. Suppose not. Then p(0,0,2)€cé since g must be 6-adjacent

NM must also be 6-adjacent to

to Cé in Nq, Thus, W.L.G., either (i) p(O,l,l)éCl and p(1,0,1)¢
C, or (ii) p(0,1,1)€C; and p(O,—l,l)ECz. If (i), then
p(l,1,1)€S. But then p(l,1,1) cannot be adjacent to Ci in Nq
without merging Ci and Cé. # If (ii), then one of p(1,0,1) and
p(-1,0,1) must be in Cé since there must exist a 6-path in ﬁé
from p(0,0,2) to p. # Therefore, q is 6-adjacent to each of

C;NM, C,NM and CJNM. W.L.G., let {p(0,1,1), p(0,-1,1), p{1,0,1)}

2
contain Yir Yy and an element of CéﬂM. Note that {p(1l,1,1),
p(l,-1,1)}cs and that some x¢{p(-1,1,1), p(-1,0,1), p(-1,1,1)}
must also be in S. Now, a cannot connect p(0,1,1) and p(1,0,1) or
else p(1,1,1) could not be 6-adjacent to two components of ﬁq.
Similarly, o cannot connect p(0,-1,1) and p(1,0,1) or else
p(l,-1,1) could not be 6-adjacent to two components of ﬁg.
Thus o must connect p(0,1,1) and p(0,-1,1). But then x cannot

be 6-connected to p(l1,0,1) in ﬁé. (# from which (1) follows).

wr — e -



o e o i

If (2), then W.L.G., either (i) p(O,l,O)GCl and p(1,0,0)¢
C2’ (i1) p(O,l,O)GC1 and p(l,l,l)ECz, or (iii) p(l,l,-l)ecl,
p(l,l,l)ecz, and {p(0,1,0), p(1,0,0)}cs. If (i), then p is
6-adjacent to only one component of ﬁé. # If (ii), then p(0,1,1)¢
S. Hence, p(1,0,0)€S since it can be 6-adjacent to only one
component of N

p(0,1,1)"
case (i) again. But if p(l,0,0)ECl, g can be adjacent to only

However, if p(l,O,O)GC2 then we have

one component of ﬁp. # If (iii), then each point of M not in
Ng must be in S and M has only two components. (# from which
(2) follows).

If (3), then W.L.G., either (i) p(O,l,O)EC1 and p(l,O,l)GC2
or (ii) p(O,l,l)GC1 and p(1,1,0)€c2. In either case, p can
be adjacent to only one component of ﬁq. # This completes the

proof.

Lemma 3. If p€S, g€S, and q is 6-adjacent to p, then ﬁbuﬁé has

two components each of which is 6-adjacent to p.

Proof: Suppose not. W.L.G., let g=p+, let Cl and C2 denote
the two components of ﬁé with p+ecl, and let a denote a 6-path

. =2 1 1

in Nq from yleanCl to yzeancz. Then yze{p(-l,-l,l),p(-l,l,l),
p(ll_lll)lp(lll,l)}. W.L.G., let y2=p(1'l’1) and {p(o,l,l),
p(1,0,1)}cs. '

{There is no 6-path in ﬁ;

Uﬁg from p+ to y,.] Suppose there
is such a path 8, where W.L.G. B is minimal. Then p(1,1,2)¢g
and one of p(1,0,2) or p(0,1,2), say p{(1,0,2), must be in g be-

tween p+ and Yy Observe that Np(l,o,l)nB cannot be 6-adjacent




to p+ or else p(0,1,1) could not be 6-adjacent to two compo-

nents of Np(l,O,l)'

6-adjacent to p+, p(l,-1,2)¢p, p(0,~-1,2)€p and p(0,-1,1)¢€S.

Hence p(0,0,2)¢S. Now, since B must be

Furthermore, p(1,-1,1)¢€S since it can be adjacent to only

one component of Np(0,0,2)'

to p+ via p(-1,0,1) which is the only remaining possibility.

However, now B must be 6-adjacent

But then p+ is 6-adjacent to RNN -1,1) and p(1,0,1) cannot

p(0,

be 6-adjacent to two components of Np(-l,O,l)’ # Hence,

Pty and y, must belong to three distinct components of
NL. Thus (i) v €lp(1,-1,1), p(~1,1,1)} or (ii) y;=p(-1,-1,1).
If (i), W.L.G. let yl=p(l,-1,l). Then p(0,-1,1)€¢5. Also,
since Cl and C2 must be 6-adjacent to p, p(l,l,O)EC2 and

p(l,—l,O)GCz. However, now p(l1,0,0) must be in S and p+¢N

#

p(1,0,0)°

But p+ cannot be 6-connected to p(l1,0,0) in Np(l,O,O)‘
1f (ii), then {p(-1,0,1), p(0,-1,1)3cS. Furthermore, since
p(l,-1,1) cannot be 6-adjacent to two components of ﬁé,
p(l,-1,1)€S. Now, since each of YyeYqr and p(l1,-1,1) must be
6-connected to p in ﬁb, {p(1,1,0), p(1,-1,0), p(-1,-1,0)}cS.
Thus, one of x=p(1,0,0) or x=p(0,-1,0) must be in S or Cl would
be 6-adjacent to C2 in Np. However, in either case, we would

have p+€ﬁ% but p+ cannot be 6-connected to x in ﬁ;.# The proof

is complete.

Lemma 4. If p and q=p(1,0,1) are in S, p+¢€S, and y€{p(0,-1,2),

p(0,0,2), p(0,1,2)}nS, then y is 6-connected to p via a path

S
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Proof: Suppose not. Then y#p(0,0,2), hence W.L.G. let
y=p(0,1,2). Note {p(0,0,2),p(0,1,1)}cS or else y would be
6-adjacent to ﬁp and thus 6-connected to p in Nbuﬁﬁ. Now,
since y must be 6-connected to gq in ﬁé, p(1,1,2)¢S. Again,

p(l,1,1) must then be in S. However, now p(l,1,1) cannot

be 6-adjacent to two components of Np(0,0,2)’ #

Lemma 5. Suppose p and g=p(l1,0,-1) are in S and p(O,O,-l)Gg-

1f y¢{p(~-1,1,0),p(-1,0,0),p(-1,-1,0)} and y is 6-connected to

Ffp_z in ﬁ;=-2'0, then there is a 6-path o in ﬁg 1

Uﬁg' from y
Proof: Suppose not. Note that if y=p(-1,0,0), then one of
p(-1,1,0) or p(~1,-1,0) must be in §, or else p(-1,0,-1)¢S

and y is 6-connected to ﬁé via p(-1,0,-1). Hence, W.L.G.,

let y=p(-1,1,0) which implies that p(0,1,0)¢S. Now, either
(1) p(0,1,-1)¢S or (2) p(0,1,-1)¢s. 1If (1), then p(-1,1,-1)¢S
or else y would be 6-connected to ﬁé via p(0,1,-1). Hence,
since y is 6-connected to N-2 in gi="2.0

P p
again p(-1,0,-1)¢S. Now, p(-1,-1,0) must be in S, and

, p(-1,0,0)¢5 and

p(-1,-1,-1) must also be in S. Thus, {p(0,-1,0), p(0,-1,-1)}cS.

However, p(0,0,-1)eN, o _; g

be 6-connected to p(0,-1,0) in Np(O,-l,O)’ # If (2), then

but since ge¢S, p(0,0,-1) cannot

p(0,0,-1)¢N Hence, since {p,q}cS, p(-1,0,-1)¢€S and

p(0,1,0)°
one of p(-1,1,-1) and p(~1,0,0) must also be in S. But now
we have a 6-path in ﬁguﬁ'd' from y to ﬁé. ¢ This completes
the proof.
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Lerma 6. If {p,ql}cS, p is 6-adjacent to g, and AE q is a
4

- _ .
component of (HpUHq)ﬂS, then MNS, where M U{Nx | xéBp’q},
has two components, Cl and C2. which are each 6~-adjacent

to every element of A* .
Y P, q

Proof: W.L.G. g=p(0,0,1) or g=p(1,0,0). If g=p(0,0,1), then

the proof follows immediately by induction on Lemma 2. Thus,

assume g=p(1,0,0). Hence, there exist integers n, and m such

that A* = U A* i), where f <i-m, A* i . To f
P/d i m p,qlt) e for nysizm, Ag o (1)7F ;

(o] ! I

simplify notation, for each n_si=m, let A;,= U A*  (j), |

ce:  Ped
n =jsi

B.= U B* (j)y
t oo _sjsi Prd

and M;=U{N_ | x€B;}. Note that B;’q(l+l)gMi

for each nosi<m. From Lemma 2 and Lemma 3, it follows immedi-

ately that ﬁh has two components which are each 6-adjacent e
(o)
to each element of An . We now proceed by induction. Assume
o

n, sn<m and ﬁh has two components, Cl and C2, which are each

6-adjacent to every element of A . [To show: ﬁﬁ+l has two

components which are each 6-adjacent to every element of An+1']

Suppose not, then there must exist a 6-path a in U{ﬁi | xEB;Iq(n+1)}
1 from y, €C;N (U{NY | x¢Bf _(n+1)}) to ¥, €C,N (U{NY | x€BE (n+1)}).
Due to the geometric symmetries involved, we need only consider
the following four cases:
(1) A;'q(n) = {p(0,0,n)}, A;’q(n+l) = (p(0,0,n+l1)),
(2) Aﬁ,q(") = {p(1,0,n)}, A;,q(n+l) = {p(0,0,n+l)},
(3) A;'q(n) = {p(1,0,n)}, A;’q(n+1) = {p(0,0,n+l), p(1,0,n+l)},
(4) Ag'q(n) = {p(0,0,n), p(1,0,n)}.
]
e e Gt e TR e A AN .
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* = = -
(1). (Ap’q(n) {p(0,0,n)}, A;’q(n+l) {p(0,0,n+1)}) It

. . & - 1
follows immediately from Lemma 2 that M, where M_MnUNp(O,O,n+1)'

has two components, Ci and C!, each of which is 6-adjacent to

L L}
every element of An+1' Furthermore, Clgcl and ngcz. Hence,

we can assume that o is a 6~-path, contained in the two right-
=1 . . . '
most columns of Np(l,O,n+l)’ which is 6-adjacent to ylécl and

y26C5 where {yl,yz} is contained in the union of the rightmost

1
P(0,0,n+l)

Note that one of Yy and Yy (say yl) cannot be 6-connected to

column of N and the rightmost column of Ng(l,l,n+l)-

—

Nb(0,0,n+1) Vi2 @ Path in No o 05 )WNS 5 6 nel
two components of Np(O,0,n+1) would be merged by the rightmost

X or else the

plane cf Np(l 0,n+1) in contradiction (by symmetry) to Lemma 3.
I r

However, each of Yy and Yo must be 6-connected to p(0,0,n+l)

by a path in M. Thus, W.L.G. let y;=P(2,1,n+1) which implies
{p(2,1,n+1), p(2,1,n+2), p(2,l,n)}£§ and {p(1,1,n+1l), p(2,0,n+l),
p(l1,1,n), p(2,0,n)}cs.

(i) [p(1,0,n+1)€C)] Since Y1 €C{ must be 6-connected to

' p(0,0,n) in M, let k denote the greatest integer less

than n such that one of p(1,1,k) and p(2,0,k) is in

S. Then observe that p(l,0,k)¢S or else either p(l,1,k+l)
is not 6-adjacent to two components of Np(2,0,k+1)

or p(2,0,k+1) is not 6-adjacent to two components

of ﬁé(l,l,k+l)' Also, note that if k<i=<n, p(1,0,i)¢€S.

To see that this is true, suppose for some k<i<n,
p(l,0,i)€éS. Let j be the greatest such i, then
p(1,0,j+1)€S and {p(1,1,j+1), p(2,0,3+1), p(1,0,3),
p(2,0,3)}cS. But now p(2,0,j) cannot be 6-adjacent

to two components of p(l,1,3+1)° # Hence, it follows




(ii)

(iii)

that p(1,0,k+1)€S and p(1,0,k+1) is 6-connected

to p(1,0,n+l) in M. Now, p(1,0,k+1l) and p(2,1,k+1)

are in opposite components of N_., or else one
p\Llork)

of p(1,1,k+1) and p(2,0,k+1l) could not be 6-adjacent

to two components of ﬁﬁ(l,n,k)' Thus, since p(l,0,

k)GAn and Np(l,O,k)EM' p(1,0,k+1) and p(2,1,k+l) are

in opposite components of M. ilence, since p(l1,0,n+l)

is 6-connected to p(1,0,k+1) in ﬁh and y, is 6-connected

to p(2,1,k+1) in M, we have p(l,O,n+l)€Cé.
{Suppose Yoy is also in the rightmost column of Ng(l,o,
n+l).) Thus y2=p(2,-l,0). Then since two components

of Np(O,O,n+1) cannot be merged by the rightmost plane

of N it follows that the rightmost column

P(1,0,n+1)’

1

of N Hence p(1,0,n+2)¢S or else p(0,2,

(1,0,n+1)S5
n+l) could not be 6-adjacent to two components of
Nb(lJ”n+1Y Furthermore, p(l,-1,n+l)¢S or else p(1,0,
n+2) could not be 6-adjacent to two components of
p(2,0,n+l). Now, since Yo is 6-connected to p(0,0,n)
in M, it again follows as in (i) that y, and p(1,0,n+l)
must be in opposite components of M. But {yl,p(l,o,
n+lngpé. #

{Suppose Yo is in the rightmost column of

;(0,0,n+1)') Note that p(l1,0,n+2)¢€¢S, or else

N
{p(1,1,n+2), p(2,0,n+2)}cS and a could not connect
Y, to y,. Thus p(0,1,n+l)€S since it cannot be 6-

adjacent to two components of Np(l,o,n+2)'

more, p(O,l,n+l)€Ci since p(0,1,n+l) and p(l1,0,n+l)

Further-

)

g

W
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must be in different components of ﬁp(o,o,n+1)

or else p{l,1l,n+l) could not be 6~adjacent to two
components oOf Np(O,O,n+l)' Finally, p(0,1,n+2)¢€S

since otherwise p(0,1,n+l) could not be 6-connected

to p(1,0,n+2) in Np(l,o,n+2)'

and yZ#p(l,l,n+2). Thus, y2=p(l,-l,n+2). Now,

Hence, p(0,l,n+2)€Ci

p(l,-1,n+1)¢€S, or else p(l,0,n+l) could not be 6-

connected to p(0,0,n+l) in N But since

p(0,0,n+1)°
p(0,1,n+2)€Cy, {p(2,0,n+2), p(2,-1,n+2)}ca. However,

it then follows that p(l1,0,n+2) is 6-adjacent to
only one component of Np(2,0,n+l)’ (# from which (1)
follows.)

(2).(A;'q(n)={p(l,0,n)}, As,q(n+l)={p(0,0,n+l)})- Con-

sider N cM_. Note 315¢1 and B,cC

p(1,0,n)Mn where Bl and 32 are

2—-"2

the two components of N . From Lemma 5, if y¢S, y is
p(1,0,n)
d in the leftmost column of Ng(o,o,n+l), and y is 6-connected
. . . =i=-1,0
to p(1,0,n) in Mn' then y is 6-connected to p(l1,0,n) 1in Np(O,O,n+l)

| Uﬁb(l,o,n)' Furthermore, from Lemma 2, it follows that By

and B, cannot be merged in Np(O,O,n+l)' Thus, M, where M=M U
-1 ‘ -
Np(O,O,n+l)' has two components, Ci and C!, each of which is . ;

6-adjacent to every element of An+1' Furthermore, Clgpi and

C2:Ci. Hence, as in (1), we can assume that « is a 6-path in

the two rightmost columns of ﬁ;(l'o which is 6-adjacent
[ [

n+l)
to y,€C; and y,€Cj where {y,r¥,}c the union of the rightmost
1

£
column of Np(O,O,n+l)

. 0
and the rightmost column of Np(l,o,n+1)'
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However, by geometric symmetryto Lemma 4, if either of Yy

C . . 1 .
or y, is in the righthand column of Np(O,O,n+l)’ then it

. . .= =2
is 6-connected to p(1,0,n) via a path in Np(l,o,n)UNp(l,O,n)'

Thus, merges two components of Np(l,o,n) in con-

=2
Np(1,0,n)
tradiction to Lemma 3. #

. * = * +1)= _ +1),
(3 (Ap’q(n) {p(1,0,n)}, Ap’q(n 1)={p(0 Oin 1)
p(1,0,n+1)}). As in (2) above, M, where M=MhUNp(0,O,n+l)’
has two components, Ci and C!, each of which is 6-adjacent

to every element of An+l' Hence, again we can assume a is

contained in the two rightmost columns of Np(l,o,n+l)' How-

ever, we now have two components of N merged by a 6-
p(i,0,n)

path in Np(l;o,n+l
(4). (A; q(n)={(p(0,0,n), p(l,0,n)}). W.L.G., assume
’

X which violates Lemma 2. #

p(l,0,n+1l)€S. From either Lemma 2 or Lemma 3, we have that
— =1

M, where M—MAJNP(O,O,n+1)’
of which is 6-adjacent to every element of L Hence, a is

. . . -1 .
contained in the two rightmost columns of Np(l,o,n+l)' Again,

has two components, Ci and Cé, each

we then arrive at a contradiction to Lemma 2 as in (3) by con-

sideration of Np(l,O,n+l)UNp(l,0,n)' This completes the proof.

T e
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4. Conclusion
Theorem 1. If S is a connected collection of simple surface
points then S has exactly one cavity, and S is said to be a

simple closed surface.

Hence, we now have the above characterization of simple
closed surfaces which holds for both 6-connectivity and 26-
connectivity. Furthermore, this characterization is of minimal
computational cost in that only the smallest three~dimensional
neighborhoods (3x3x3) of the respective points need to be exa-

mined. This completes the study of {10] and [13].
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